Hydrogenation of 3-Ethoxy-1-propene Catalyzed by Supported Nickel Catalysts

Hiromi Matsuhashi and Hideshi Hattori*

Department of Chemistry, Faculty of Science, Hokkaido University Sapporo 060

(Received March 15, 1984)

Synopsis Nickel catalysts supported on different kinds of metal oxides were prepared to search for active catalysts for 3-ethoxy-1-propene hydrogenation. Ni/ThO2 and Ni/SiO2-Al2O3 catalysts exhibited high activity and selectivity for 1-ethoxypropane, while Ni/MgO, Ni/CaO, and Ni/La2O3 catalysts preferentially catalyzed double bond migration to 1-ethoxy-1-propene which undergo hydrogenation with difficulty.

In contrast to extensive studies of hydrogenation of olefins, less attention has been given to hydrogenation of unsaturated compounds containing hetero atoms. We have reported that for the hydrogenation of unsaturated compounds containing nitrogen the activities of nickel catalysts varied considerably with the type of support and the support acted as one function in bifunctional catalysis.¹⁾

For unsaturated compounds containing oxygen, hydrogenation of allyl alcohols has been studied with heterogeneous catalysts to some extent.²⁰ However, hydrogenation of allyl ethers has been studied only with Raney Ni³⁰ and NiB.⁴⁰ The present study was undertaken to understand more about hydrogenation of allyl ethers on supported Ni catalysts. Ten kinds of metal oxides were selected as supports for Ni, and used for hydrogenation of 3-ethoxy-1-propene. It was found that the Ni catalysts supported on ThO₂ and SiO₂-Al₂O₃ were highly active and selective.

Supported Ni catalysts were prepared by an impregnation method. The metal oxides used as support, and their surface areas, were MgO (84 m²/g), CaO (16 m²/g), La₂O₃ (43 m²/g), ThO₂ (42 m²/g), ZrO₂ (65 m²/g), TiO₂ (85 m²/g), Al₂O₃ (227 m²/g), SiO₂ (333 m²/g), and SiO₂-Al₂O₃ (278 m²/g). Prior to impregnation, there metal oxides were calcined at 773 K in air for 6 h. The metal oxides were suspended in

aqueous nickel nitrate, and the water was evaporated to dryness over a water bath. The nickel nitrate on the metal oxides was then decomposed at 773 K in air for 3 h. Prior to the reaction, the catalysts were reduced with hydrogen at 773 K. The Ni content was 9.1—9.2 wt% for all catalysts except Ni/Al₂O₃. The Ni/Al₂O₃ contained 10 wt% Ni.

A greaseless closed recirculation reactor was used for carrying out the reaction. A mixture of 1.3 kPa 3-ethoxy-1-propene and 2.6 kPa hydrogen was allowed to react with ca. 100 mg of catalyst (24—32 mesh grain) at 273 K or 323 K. The products were analyzed by GLC. Identification was by NMR for separately collected products.

The amount of hydrogen adsorbed on catalysts was measured volumetrically at 273 K. The saturated amounts of hydrogen were calculated by applying the adsorption isotherm to the Langumuir equation for dissociative adsorption.

Time dependences of the composition in the reaction are shown in Fig. 1 for Ni/Al₂O₃ and in Fig. 2 for Ni/ThO₂ and Ni/SiO₂-Al₂O₃. Over Ni/Al₂O₃, 3ethoxy-1-propene underwent both hydrogenation to 1ethoxypropane and double bond migration to (E)- and (Z)-1-ethoxy-1-propene when the reaction was carried out at 273 K. 3-Ethoxy-1-propene disappeared after 240 min. As the reaction temperature was raised to 323 K, 1-ethoxy-1-propene underwent appreciable hydrogenation. This feature of the time dependence was commonly observed for all catalysts except for Ni/SiO₂-Al₂O₃, though the relative rate of hydrogenation to that of double bond migration varied with the type of catalyst. For instance, over Ni/La₂O₃, the double bond migration was very fast as compared with hydrogenation. Over Ni/ThO2, hydrogenation was

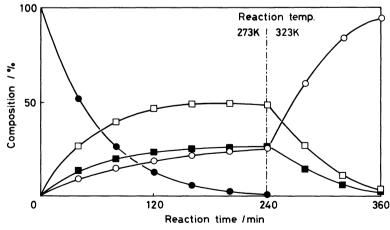


Fig. 1. Time dependence of the composition in the hydrogenation of 3-ethoxy-1-propene over Ni/Al₂O₃.

 \bigcirc : 1-Ethoxypropane, \bigcirc : 3-Ethoxy-1-propene, \bigcirc : (Z)-1-Ethyoxy-1-propene,

 \blacksquare : (*E*)-1-Ethyoxy-1-propene.

TARIE 1	Hyppogenation o	F 3-ETHOXY-1-PROPENE	OVED SUPPORTED	Ni CATALVETS

Catal.	Weight /mg	Conv. of reactant/%	Composition of products/%				Amount of H ₂
			3-ethoxy- 1-propene	(Z)-1-ethoxy- 1-propene	(E)-1-ethoxy- 1-propene	l-ethoxy- propane	adsorption $/\times 10^{-5} \text{ mol g}^{-1}$
Ni/ThO ₂	104	100	0.0	0.0	0.0	100	0.9
Ni/La_2O_3	105	100	0.0	74.8	12.3	12.9	0.6
Ni/CaO	107	100	0.0	87.4	4.2	8.4	0.1
Ni/MgO	97	100	0.0	99.3	0.7	0.0	0.0
Ni/SiO ₂ -Al ₂ O ₃	102	100	0.0	0.0	0.0	100	4.0
Ni/TiO ₂	105	9.4	90.6	0.9	0.0	8.5	0.8
Ni/ZrO ₂	100	3.0	97.0	0.0	0.0	3.0	0.2
Ni/Al ₂ O ₃	109	62.8	37.2	34.1	16.9	11.8	
Ni/SiO ₂	100	15.2	84.8	1.9	4.0	9.3	12.8

Reaction temperature; 273 K; reaction time; 60 min.

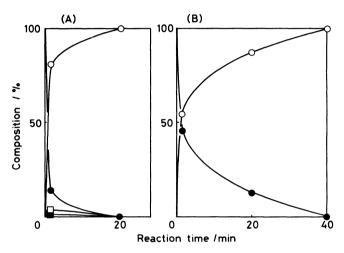


Fig. 2. Time dependences of the composition in the hydrogenation of 3-ethyoxy-1-propene over Ni/ThO₂ (A) and Ni/SiO₂-Al₂O₃ (B).

 \bigcirc : 1-Ethyoxypropane, \bigcirc : Ethyoxy-1-propene, \square : (Z)-1-Ethyoxy-1-propene, \square : (E)-1-Ethyoxy-1-propene.

complete in 20 min, and the amount of 1-ethoxy-1-propene formed was very small as shown in Fig. 2(A). The characteristic feature with Ni/SiO₂-Al₂O₃ is seen in Fig. 2(B); double bond migration to 1-ethoxy-1-propene did not occur.

The composition of the products after 60 min when reactions were carried out at 273 K over ca. 100 mg of catalyst samples are summarized in Table 1. Other products such as ethanol and propane were not detected. The amounts of hydrogen adsorbed are also

included. The Ni/ThO2 and Ni/SiO2-Al2O3 exhibited high activity; giving 100% hydrogenated product in 60 min. In particular, the Ni/ThO₂ gave 100% hydrogenated product even in 20 min. The hydrogenation activities were low for the catalysts other than Ni/ThO₂ and Ni/SiO₂-Al₂O₃. With Ni/MgO, Ni/CaO, and Ni/La₂O₃, large amounts of l-ethoxy-l-propene resulted from the double bond migration. 1-Ethoxy-1propene undergoes hydrogenation at a much slower rate than 3-ethoxy-1-propene does. To obtain a faster hydrogenation rate, catalysts are desirable that do not catalyze the double bond migration of 3-ethoxy-1-The low hydrogenation activities of Ni/MgO, Ni/CaO, and Ni/La₂O₃ are considered to be due to the high activity of the supports for double bond migration.5)

The active catalysts, Ni/ThO₂ and Ni/SiO₂-Al₂O₃, adsorbed relatively large amount of hydrogen. Although Ni/SiO₂ adsorbed large amounts of hydrogen but showed low activity, a capability of adsorption of a large amount of hydrogen may be required for a catalyst to be active for hydrogenation.

References

- 1) H. Hattori, H. Imai, and K. Tanabe, Appl. Catal., 4, 87 (1982).
 - 2) For example; Y. Izumi, Proc. Jpn. Acad., 53, 38 (1977).
- 3) V. B. Mikhant'ev, H. Priebs, and L. M. Bulgakva, Deposited Doc., VINITI 95-77, 7 (1977).
- 4) T. W. Russell and R. C. Hoy, J. Org. Chem., **36**, 2016 (1971).
 - 5) H. Matsuhashi and H. Hattori, J. Catal., 85, 457 (1984).